鈦酸鋇的性質介紹
時間:2022-05-06
閱讀:
鈦酸鋇是一種典型的鐵電體,所以提到鈦酸鋇,就一定要提到它的自發極化 。一般來講,電介質的電極化過程(方式)有三種,即電子位移極化、離子位移極化和固有電矩轉向極化。對于鈦酸鋇而言,經過物理學家的嚴格推算,鈦酸鋇的自發極化的貢獻主要來自于Ti的離子位移極化和氧八面體其中一個O的電子位移極化。
鈦酸鋇晶體是由無數鈦酸鋇晶胞組成的。當立方鈦酸鋇晶體冷卻到居里點Tc時,將開始產生自發極化,并同時進行立方相向四方相的轉變。在發生自發極化的時候,其中一部分相互臨近的晶胞都沿著原來立方晶胞的某個晶軸產生自發極化,而另一部分相互臨近的晶胞可能沿原立方晶胞的另一個晶軸產生自發極化。這樣當鈦酸鋇轉變成四方相后,晶體就出現了沿不同方向自發極化的晶胞小單元,我們稱之為電疇。也就是說,通過降低溫度,晶體從順電相轉變為鐵電相時,由于自發極化,引起表面靜電相互作用變化,產生電疇結構。
電疇的類型、疇壁的取向,除了主要由晶體的結構對稱性決定外,同時還要滿足以下兩個條件: ① 晶格形變的連續性:電疇形成的結果,使得沿疇壁而切割晶體所產生的兩個表面上的晶格連續并相匹配。 ② 自發極化分量的連續性:兩相鄰電疇的自發極化強度在垂直于疇壁方向上的分量相等。 因此,在四方鈦酸鋇單晶中,相鄰電疇的自發極化方向只能相交成180°或90°,即只存在180°疇和90°疇。在單斜晶系鈦酸鋇中,由于自發極化沿原立方晶胞的面對角線,因此除了180°和90°疇外,還存在60°和120°疇。而在三斜晶系鈦酸鋇中,除了存在180°疇外,還存在60°和109°疇。
這里所說的鈦酸鋇的介電性質主要指的是鈦酸鋇陶瓷的介電性質 。鈦酸鋇陶瓷的介電性能基本上和鈦酸鋇單晶的相似。但由于陶瓷是多晶結構,存在晶粒和晶界。晶粒的大小和無序取向,晶界中玻璃相及雜質的存在,均直接影響其介電特性,使其與單晶的有所不同。
純鈦酸鋇陶瓷的ε在a軸和c軸隨溫度T的變化關系。它與單晶的ε和tanδ隨溫度T的變化關系比較,在Tc附近的ε的特性相差不大,但在5℃和-90℃兩相變溫度附近卻沒有單晶那樣變化顯著。另外,鈦酸鋇陶瓷的晶粒的大小也會影響ε和溫度T的變化關系。可以看出,隨著晶粒尺寸的減小,在Tc以下ε增大,而在Tc附近ε峰值降低。
鈦酸鋇單晶介電常數隨溫度的變化曲線
鈦酸鋇是一種強介電材料,是電子陶瓷中使用最廣泛的材料之一,被譽為"電子陶瓷工業的支柱"。關于鈦酸鋇的研究實在太多太多。國內外許多的學者對鈦酸鋇做了大量的研究工作,通過摻雜改性,已經得到了大量的新材料,尤其是在MLCC方面的應用。其應用前景極其廣闊,期待我們的加入。主要用于電子陶瓷、PTC熱敏電阻、電容器等多種電子元器件的配制以及一些復合材料的增強。
鈦酸鋇晶體是由無數鈦酸鋇晶胞組成的。當立方鈦酸鋇晶體冷卻到居里點Tc時,將開始產生自發極化,并同時進行立方相向四方相的轉變。在發生自發極化的時候,其中一部分相互臨近的晶胞都沿著原來立方晶胞的某個晶軸產生自發極化,而另一部分相互臨近的晶胞可能沿原立方晶胞的另一個晶軸產生自發極化。這樣當鈦酸鋇轉變成四方相后,晶體就出現了沿不同方向自發極化的晶胞小單元,我們稱之為電疇。也就是說,通過降低溫度,晶體從順電相轉變為鐵電相時,由于自發極化,引起表面靜電相互作用變化,產生電疇結構。
電疇的類型、疇壁的取向,除了主要由晶體的結構對稱性決定外,同時還要滿足以下兩個條件: ① 晶格形變的連續性:電疇形成的結果,使得沿疇壁而切割晶體所產生的兩個表面上的晶格連續并相匹配。 ② 自發極化分量的連續性:兩相鄰電疇的自發極化強度在垂直于疇壁方向上的分量相等。 因此,在四方鈦酸鋇單晶中,相鄰電疇的自發極化方向只能相交成180°或90°,即只存在180°疇和90°疇。在單斜晶系鈦酸鋇中,由于自發極化沿原立方晶胞的面對角線,因此除了180°和90°疇外,還存在60°和120°疇。而在三斜晶系鈦酸鋇中,除了存在180°疇外,還存在60°和109°疇。
這里所說的鈦酸鋇的介電性質主要指的是鈦酸鋇陶瓷的介電性質 。鈦酸鋇陶瓷的介電性能基本上和鈦酸鋇單晶的相似。但由于陶瓷是多晶結構,存在晶粒和晶界。晶粒的大小和無序取向,晶界中玻璃相及雜質的存在,均直接影響其介電特性,使其與單晶的有所不同。
純鈦酸鋇陶瓷的ε在a軸和c軸隨溫度T的變化關系。它與單晶的ε和tanδ隨溫度T的變化關系比較,在Tc附近的ε的特性相差不大,但在5℃和-90℃兩相變溫度附近卻沒有單晶那樣變化顯著。另外,鈦酸鋇陶瓷的晶粒的大小也會影響ε和溫度T的變化關系。可以看出,隨著晶粒尺寸的減小,在Tc以下ε增大,而在Tc附近ε峰值降低。
鈦酸鋇單晶介電常數隨溫度的變化曲線
鈦酸鋇是一種強介電材料,是電子陶瓷中使用最廣泛的材料之一,被譽為"電子陶瓷工業的支柱"。關于鈦酸鋇的研究實在太多太多。國內外許多的學者對鈦酸鋇做了大量的研究工作,通過摻雜改性,已經得到了大量的新材料,尤其是在MLCC方面的應用。其應用前景極其廣闊,期待我們的加入。主要用于電子陶瓷、PTC熱敏電阻、電容器等多種電子元器件的配制以及一些復合材料的增強。